最新帖子 精华区 社区服务 会员列表 统计排行
  • 345阅读
  • 0回复

这10本由浅入深的好书,或让你成为机器学习领域的专家(三)

楼层直达
级别: 论坛版主

数据科学从零开始






这是另一本基于 python 的作品。尽管这本书比大多数书籍简洁,但却对例子进行了详尽的描述。在数据科学这本书中,每一段代码前作者都附上了一段介绍。所以即使是新手也可以很快上手。

尽管这样,我仍然要向中高级 Python 开发人员推荐这本书。你不必知道机器学习的的方法或者数据分析的过程就能得到你想要的(正如标题中所写的“从零开始”)。

这本书的风格简洁而准确,深度上比 python 机器学习浅一些。如果你想深入研究机器学习,那么这两个都是不错的选择。

这本书中的编码风格我非常喜欢。每一小片的代码都是基于之前的工作,而且作者都附上了详细的思路和过程。


搭建自己的神经网络






尽管在标题中没有明言,这本书构建神经网络的语言仍然是 python。Tariq Rashid 将神经网络作为机器学习过程中的基本组件,而这本书也是深入理解神经网络的最佳选择之一。
这本书是杰出的,但价格却并不昂贵。读这本书之前,你需要有一定的 python 基础,这样读起来才会比较顺利。
作者希望通过用鲜活的例子来帮读者建立对神经网络的理解。在读这本书前,你并不需要成为专家,但是你要有足够的决心来克服书中较难的章节。
值得庆幸的是作者的写作风格温和且易懂,因此你在阅读过程中不会遇到太多阻碍。神经网络是非常难掌握的,而拥有这本书就足够了!

机器学习原理:预测数据分析



这本书的标题有点拗口,价格在所有书中也偏贵,但这本 MIT 出版社出版的书确实是一本非常棒的书。
机器学习原理:预测数据分析向我们展示了基于关系和自定义算法的分析和数据选择过程。这包括能从其他相关资源中获取信息的更通用的信息学习。这本书还包含了复杂的基于概率的机器学习方法。
你将学习到让机器学习算法按照你的指示进行数据分析的高级技能。这本书通过例子的方式引导读者,并且驱动读者考虑不同的方式分析数据。
在读这本书之前,你需要足够的编程知识和矩阵知识。我想将这本书推荐给了解机器学习并想更进一步的数据科学家。

模式识别和机器学习



这本书也是为高级数据科学家和高级开发人员准备的。每一章节包含基于数据集中模式的概率和机器学习的话题。
模式识别和机器学习是掌握模式识别的导论。这本书用基本的概念带你从宏观进入到鲜活的实例中。
这本书的写作风格是没的挑的。作者倾向与重复的阐明一个观点。因此尽管这书的内容很难,这仍然是将知识灌进读者脑子的最佳方式。
你需要有深厚的数学功底,甚至数据科学的知识也是非常必要的。这本书很难,但是简洁的书写风格和清晰的例子会让你对模式识别有更深的认识。
这 10 本书是我精心挑选的,它们涵盖了很宽泛的领域。如果你想更好的理解机器学习或者解决项目中的问题,你需要根据你的实际情况选择最适合你的书,因为它们值得拥有。
对于没有基础的新手来说,我会推荐《傻瓜机器学习》这本书。如果你想着手于 python,那么 python 机器学习是个很好的选择。
这些书都是很棒的。我建议你先理解一门语言,这样就可以从一个真实场景中理解这些概念。

很多书都非常专业,因此很难去广泛的推荐。但是读完本文后,一定会有你想要的。




快速回复

限200 字节
 
认证码:
上一个 下一个